PORTELA, M. M., 2000, "Chapter 10 - Economic analysis" *in* RAMOS, H. (ed.) *Guidelines for the design of small hydropower plants*, pp. 167 190, CEHIDRO/WREAN/DED, ISBN 972 96346 4 5, Irlanda.

- 19 -

10

ECONOMIC ANALYSIS Maria Manuela Portela

8.1- Introduction. Costs and benefits

The decision on whether or not a small hydropower scheme should be constructed or the choice among alternative design solutions for the same are generally based on the comparison of the expected costs and benefits for the useful life of the project, by means of economic analysis criteria. This analysis should be performed in the first stages of the design (as soon as the feasibility study) as nothing ensures that a project suitable from a technical point of view it is also advantageous from an economic point of view.

It should be pointed out that the choice among alternative solutions having identical benefits is simply accomplished by identifying which one has the lower cost. Only the comparison of alternative projects or design solutions with different costs and benefits requires the application of economic criteria in order to identify the most desirable alternative.

The effectiveness of the economic analysis as a decision tool of the investor depends on the accuracy of the project cost and benefits estimates. These estimates are not easy to reach, especially in the first stages of design where some of the scheme characteristics are only preliminary defined.

- 167 -

The costs of a small hydropower scheme can be grouped in the three following categories, also systematised in Table 8.1:

- The capital cost that may be defined as the sum of all expenditures required to bring the project to completion. These costs occur during the construction period (generally, from one to three years).
- The annual operation costs resulting from the exploitation and maintenance of the scheme during its useful live.
- The reposition costs concerning to the substitution of the equipment having a useful live lesser than the one of the scheme.

Capital costs	Studies and design
	Supervision during the execution
	Civil works
	Equipment
	Land acquisition
	Contingencies or unforeseen cost
Annual operation costs	Exploitation
	Maintenance
	Spare parts
	Grant of permission
Reposition costs	

Table 8.1 – Costs of a small hydropower scheme

The following items should generally be considered within the capital costs – Table 8.1:

- Studies and design.
- Supervision during the execution.
- Civil works (including access roads and building site facilities).
- Equipment (including hydromechanical, electromechanical and electrical equipment and the interconnection to the electrical grid).
- Land acquisition.

It should also be considered an item for contingencies or unforeseen cost. This item represents expenditures that are possible but not certain or yet foreseen. For instances, this item intends to overcome the uncertainty that result from the fact that the characteristics of the site where the scheme is going to be constructed are

- 168 -

not totally known, especially in the first design phases and, so, they may be incompletely expressed in the scheme conception. The uncertainty under consideration is mainly related with the civil works and can result, for instances, from excavation or landing works undervalued or from bedrock having characteristics worse than those foreseen in the design.

The studies and design costs and the supervision costs during the scheme execution result from agreements between the investor and consulting firms. If the investor has previous experience in the execution of small hydropower schemes, he should be able to express the costs under consideration as a percentage of the civil works and equipment costs.

The civil work costs are evaluated from the design, by measuring the work quantities relative to the different components of the scheme and affecting them of unit prices, which generally are not difficult to obtain from each country civil work contractors market. To evaluate the equipment costs budget prices from the suppliers should also be obtained.

The cost of the acquisition (or renting) of the land that will be occupied by the scheme (including accesses and the area that will be submerged by the scheme reservoir) depends strictly on the land valorisation in each country.

If possible, the capital costs estimated to the hydropower scheme under study should be compared with the ones of similar schemes, already built or previously characterised. This procedure is more important in what concerns the evaluation of the equipment cost as frequently it is not possible to get budget prices from the suppliers in a period as short as the design one.

The annual operation costs include the following main components – Table 8.1:

- Exploitation.
- Maintenance.
- Spare parts.
- Grant of permission or legal permit.

The exploitation costs represent the charges with the staff responsible for the scheme operation. To reduce these costs the scheme should be made automatic, that is to say, explored in an abandon mode. This kind of exploitation requires

- 169 -

additional equipment (for instances, telephone or satellite lines for telemetry and alarm signals).

The maintenance costs include two parcels, related one with the civil works and the other, with the equipment. The former in generally the smallest representing from 0,25% to 0,50% of the capital costs in civil woks, while the latter can reach about 2,50% of the respective capital costs.

The spare parts costs are the costs with the reposition of the material that is necessary to keep in stock in order to perform the maintenance of the hydropower scheme or to execute small repairs in the same. These costs can be assigned to annual costs or to costs without periodicity, occurring whenever it is necessary to restore the stock of the material.

The grant of permission costs occur once the scheme starts to operate and represent the annual payments due for the scheme license and for the water utilisation. Although these costs result from the legislation in force in each country, in terms of economic appraisal they can be treated as fixed percentages of the energy incomes.

From the investor point of view, the only tangible revenue or benefit in a small hydropower scheme is the annual income with the energy production sale. This income depends on the amount of energy produced during the scheme lifetime and on the specific conditions that rule the hydroelectric sector, namely the energy sale contract conditions and the tariffs policy, which are specific in each country.

In the further development of this chapter it will be assumed that the purchase of the energy produced in a small hydropower scheme is ensured, no matter the amount and the characteristics of the production. This scenario should be real as it translates the special rule that the renewable energies are expected to play in the energetic policy, not only of Europe, but also of the world.

The evaluation of the energy production requires accurate hydrological studies based on specific methodologies that overcome the non-existence of basic hydrological data that characterises most of the small hydropower schemes, generally located in small and ungauged watersheds. The results of the hydrological study have to be interpreted taking into account the characteristics

- 170 -

of the watershed that condition the water availability and regime at the water intake of the scheme: watershed geology, vegetation covering, land utilisation, water consumption, existing upstream storage reservoirs, ecological requirements.

As the energy production that will result from the future inflows at the scheme water intake can not be specify, the revenues in the economic analysis are considered to be fixed during the lifetime of the project and based on a annual long-term average discharge of the river. By other words, the revenues are generally defined on the basis of an annual production constant and equal to the expected mean one, \overline{E} .

The uncertainty concerning the future inflows and, thus, concerning the future energy productions, can be regard as a hydrologic risk. Based on the statistic analysis of the historic flow series, this risk can be expressed, for instances, in terms of the probability of occurring future periods of dry years or of years with annual flows bellow a limit. This kind of analysis is most important and should be performed in countries, as those of south Europe, characterised by an irregular flow regime where dry periods of several years can occur.

Based on simulation studies, PORTELA and ALMEIDA, 1995, carried out hydrologic risk analysis for several hypothetical small hydropower schemes located in the North of Portugal. This analysis clearly show that the profitability of those schemes could be drastically reduced if periods of dry years occur, specially in the first years of exploitation, when the incomes are crucial for the capital recovery.

Figure 8.1 represents some of the results achieved by those authors. The cost factor, λ , was defined as the ratio between the income under real flow conditions and the income evaluated on the basis of an annual production constant and equal to the mean annual production. Two exploitation periods where considered: one with 33 years and the other with only 10 years. Based on real flow data, simulation studies were performed in order to evaluate the maximum (best series) and the minimum (worst series) incomes during each of the previous periods. The results thus achieved were represented as a function of the ratio between the design flow, Qmax, and the average mean daily flow, Qave.

- 171 -

Figure 8.1 – Variation of the income in a hypothetical small hydropower scheme, located in the North of Portugal, due to the natural variability of the flow regime (PORTELA and ALMEIDA, 1995)

8.2- Economic analysis

8.2.1- Introduction

In this item some concepts necessary to the economic analysis or appraisal of small hydropower schemes are presented in a simple and straight way.

Several literature references are available either in general terms of economic and financial analysis principles and applications (which are far beyond the scope of this Guide) or in specific terms for small hydropower schemes. Among these last ones KUIPER, 1981, ESHA, 1994 and 1997, and JIANDONG *et al.*, 1996, may also have interest in the domain of the present chapter.

8.2.2- Constant market prices system concept

Although the design of a small hydropower scheme generally foresees a schedule for the investment costs and revenues, the respective estimates are based on market prices referred to a given year, the one during which the studies were performed. The evolution of the inflation during the project lifetime and its effect on each component of the previous cost estimates is practically impossible to establish.

- 172 -

So, one could say that one of the main problems of the economic analysis in to conceive a scenario for the future evolution of the inflation. To overcome this problem a common and simple economic approach based on a constant market prices system referred to a given year is generally applied in the comparison of costs and benefits either of a project or of alternative design solutions for the same. This approach, which will be adopted in the present chapter, assumes that it is not necessary to account for the inflation, as it will have the same effect in any monetary flux. The future costs and benefits are, then, evaluated at present market prices.

8.2.3- Discount rate and present value concept

A same monetary unit (for instances, a pound or a dollar) is more worthy in the present that in the future. By other words, the future value of the monetary flux that has a present value of one unit will be great then one. At the same time, the present value of a future unitary monetary flux will be lesser than one.

Through the years, this situation generates different "appetencies" to transfer money from the present to the future and vice-verse. Theses "appetencies" can be expressed in terms of different **discount rates**, r. The values of these rates depend, among other factors, on the state of the economy, on the risk that involves the investment, the capital availability and on the expected future rate of inflation.

Let n denote a period of n years, from year 1 to year n. According to the discount rate concept and as represented in Figure 8.2, one monetary unit of today will be change in year n by $(1+r)^n$ monetary units and one monetary unit of year n will be change today by $1/(1+r)^n$ units. If r is defined, not on a yearly basis, but for a generic period of time α , n will denote the total number of α periods between the two monetary fluxes of Figure 8.2.

- 173 -

Fig. 8.2 – Transference of unitary monetary fluxes by means of the discount rate, r.

The factor $\frac{1}{(1+r)^n}$ that expresses the depreciation suffered by future monetary

fluxes when transferred to the present is call **present worth or value factor**. According to this concept, the **present value**, PV, of a single generic monetary flux occurring in future year i, C_i, is given by

$$PV = \frac{1}{\left(1+r\right)^{i}} C_{i}$$
(8.1)

The present value for the beginning of year 1 of the continuous sequence of annual monetary fluxes represented in Figure 8.3 is given by

$$PV = \frac{1}{(1+r)} C_1 + \frac{1}{(1+r)^2} C_2 + \dots + \frac{1}{(1+r)^i} C_i + \dots + \frac{1}{(1+r)^{(n-1)}} C_{n-1} + \frac{1}{(1+r)^n} C_n \qquad (8.2)$$

$$PV = \sum_{i=1}^{n} \frac{1}{(1+r)^{i}} C_{i}$$
(8.3)

- 174 -

Fig. 8.3 - Continuos sequence of monetary fluxes.

For economical analysis purpose the monetary fluxes are grouped in periods (generally years) and are considered to occur as represented in Figure 8.3, that is to say, concentrated in the end of each of those periods. The present value operations are performed for the beginning of the year adopted as reference (year one in the previous figure).

If the monetary fluxes of Figure 8.3 are constant and equal to an annuity, C, – uniform series of annual monetary fluxes – the following relation is achieved for the respective present value referred to the beginning of year 1:

$$PV = C \sum_{i=1}^{n} \frac{1}{(1+r)^{i}} = C \frac{(1+r)^{n} - 1}{(1+r)^{n} r}$$
(8.4)

where $\frac{(1+r)^n - 1}{(1+r)^n r}$ is the present worth factor for uniform series. The inverse

of this factor is denoted by capital-recovery factor.

The present worth factor either for a single monetary flux or for a series of uniform monetary fluxes is generally provided by tables as the ones presented in next pages, which can be found in most books dealing with economic analysis concepts.

- 175 -

The factor $(1+r)^n$ represented in the first part of Figure 8.2 is the capitalisation factor or the future value factor. Table 8.2 also includes its value either for a single monetary flux or for an uniform series of monetary fluxes. The formula that provides the future value factor for an uniform series of monetary fluxes is

given by $\left[\frac{(1+r)^n - 1}{r}\right]$. The inverse of the previous ratio is the **sinking-fund**

factor.

Although the computation of the previous factors does not offer special difficulty it is useful to provide tables as those included herein in order to allow expedite evaluations or to control results of the economic appraisal.

It should be pointed out that the expressions and concepts presented so far, as well as their development and application in the rest of this chapter, assume that the discount rate, r, is constant during the n years period under analysis. If this is not the situation, different sub periods having different discount rates should be considered. However, this is not a common procedure in the economic analysis of small hydropower schemes.

0,00143

0,00039

0,00010

0,00003

0,00001

0,00000

	dif	fferent tim	e periods,	n, and dis	count rate	s, r	_				
a	1) Present	worth fac	tor for sin	gle monet	ary fluxes	$\begin{bmatrix} 1 \\ \hline (1 \) n \end{bmatrix}$					
						$\left\lfloor \left(l+r\right)^{n}\right\rfloor$					
Time		Discount rate, r, of:									
Period, n	2%	4%	6%	8%	10%	12%	14%				
1	0,98039	0,96154	0,94340	0,92593	0,90909	0,89286	0,87719				
2	0,96117	0,92456	0,89000	0,85734	0,82645	0,79719	0,76947				
3	0,94232	0,88900	0,83962	0,79383	0,75131	0,71178	0,67497				
4	0,92385	0,85480	0,79209	0,73503	0,68301	0,63552	0,59208				
5	0,90573	0,82193	0,74726	0,68058	0,62092	0,56743	0,51937				
6	0,88797	0,79031	0,70496	0,63017	0,56447	0,50663	0,45559				
7	0,87056	0,75992	0,66506	0,58349	0,51316	0,45235	0,39964				
8	0,85349	0,73069	0,62741	0,54027	0,46651	0,40388	0,35056				
9	0,83676	0,70259	0,59190	0,50025	0,42410	0,36061	0,30751				
10	0,82035	0,67556	0,55839	0,46319	0,38554	0,32197	0,26974				
11	0,80426	0,64958	0,52679	0,42888	0,35049	0,28748	0,23662				
12	0,78849	0,62460	0,49697	0,39711	0,31863	0,25668	0,20756				
13	0,77303	0,60057	0,46884	0,36770	0,28966	0,22917	0,18207				
14	0,75788	0,57748	0,44230	0,34046	0,26333	0,20462	0,15971				
15	0,74301	0,55526	0,41727	0,31524	0,23939	0,18270	0,14010				
16	0,72845	0,53391	0,39365	0,29189	0,21763	0,16312	0,12289				
17	0,71416	0,51337	0,37136	0,27027	0,19784	0,14564	0,10780				
18	0,70016	0,49363	0,35034	0,25025	0,17986	0,13004	0,09456				
19	0,68643	0,47464	0,33051	0,23171	0,16351	0,11611	0,08295				
20	0,67297	0,45639	0,31180	0,21455	0,14864	0,10367	0,07276				
21	0,65978	0,43883	0,29416	0,19866	0,13513	0,09256	0,06383				
22	0,64684	0,42196	0,27751	0,18394	0,12285	0,08264	0,05599				
23	0,63416	0,40573	0,26180	0,17032	0,11168	0,07379	0,04911				
24	0,62172	0,39012	0,24698	0,15770	0,10153	0,06588	0,04308				
25	0,60953	0,37512	0,23300	0,14602	0,09230	0,05882	0,03779				
26	0,59758	0,36069	0,21981	0,13520	0,08391	0,05252	0,03315				
27	0,58586	0,34682	0,20737	0,12519	0,07628	0,04689	0,02908				
28	0,57437	0,33348	0,19563	0,11591	0,06934	0,04187	0,02551				
29	0,56311	0,32065	0,18456	0,10733	0,06304	0,03738	0,02237				
30	0,55207	0,30832	0,17411	0,09938	0,05731	0,03338	0,01963				
35	0,50003	0,25342	0,13011	0,06763	0,03558	0,01894	0,01019				
40	0,45289	0,20829	0,09722	0,04603	0,02209	0,01075	0,00529				
45	0 41020	0.17120	0.07265	0.03133	0.01372	0.00610	0.00275				

Table 8.2 (1/4) – Values of the present worth factor and of the capitalisation factor for

- 177 -

0,14071

0,09506

0,06422

0,04338

0,02931

0,01980

0,05429

0,03031

0,01693

0,00945

0,00528

0,00295

0,02132

0,00988

0,00457

0,00212

0,00098

0,00045

0,00852

0,00328

0,00127

0,00049

0,00019

0,00007

0,00346

0,00111

0,00036

0,00012

0,00004

0,00001

0,37153

0,30478

0,25003

0,20511

0,16826

0,13803

50

60

70

80

90

100

Table 8.2 (2/4) – Values of the present worth factor and of the capitalisation factor for
different time periods, n, and discount rates, r
$\begin{bmatrix} (1+r)^n & 1 \end{bmatrix}$

2) Present worth factor for uniform monotory fluxes							1
a2)	riesent w	iry nuxes	$(1+r)^n$	r			
Time		Uniform ser	ies of mone	etary fluxes	and discour	nt rate, r, of:	
period, n	2%	4%	6%	8%	10%	12%	14%
1	0,98039	0,96154	0,94340	0,92593	0,90909	0,89286	0,87719
2	1,94156	1,88609	1,83339	1,78326	1,73554	1,69005	1,64666
3	2,88388	2,77509	2,67301	2,57710	2,48685	2,40183	2,32163
4	3,80773	3,62990	3,46511	3,31213	3,16987	3,03735	2,91371
5	4,71346	4,45182	4,21236	3,99271	3,79079	3,60478	3,43308
6	5,60143	5,24214	4,91732	4,62288	4,35526	4,11141	3,88867
7	6,47199	6,00205	5,58238	5,20637	4,86842	4,56376	4,28830
8	7,32548	6,73274	6,20979	5,74664	5,33493	4,96764	4,63886
9	8,16224	7,43533	6,80169	6,24689	5,75902	5,32825	4,94637
10	8,98259	8,11090	7,36009	6,71008	6,14457	5,65022	5,21612
11	9,78685	8,76048	7,88687	7,13896	6,49506	5,93770	5,45273
12	10,57534	9,38507	8,38384	7,53608	6,81369	6,19437	5,66029
13	11,34837	9,98565	8,85268	7,90378	7,10336	6,42355	5,84236
14	12,10625	10,56312	9,29498	8,24424	7,36669	6,62817	6,00207
15	12,84926	11,11839	9,71225	8,55948	7,60608	6,81086	6,14217
16	13,57771	11,65230	10,10590	8,85137	7,82371	6,97399	6,26506
17	14,29187	12,16567	10,47726	9,12164	8,02155	7,11963	6,37286
18	14,99203	12,65930	10,82760	9,37189	8,20141	7,24967	6,46742
19	15,67846	13,13394	11,15812	9,60360	8,36492	7,36578	6,55037
20	16,35143	13,59033	11,46992	9,81815	8,51356	7,46944	6,62313
21	17,01121	14,02916	11,76408	10,01680	8,64869	7,56200	6,68696
22	17,65805	14,45112	12,04158	10,20074	8,77154	7,64465	6,74294
23	18,29220	14,85684	12,30338	10,37106	8,88322	7,71843	6,79206
24	18,91393	15,24696	12,55036	10,52876	8,98474	7,78432	6,83514
25	19,52346	15,62208	12,78336	10,67478	9,07704	7,84314	6,87293
26	20,12104	15,98277	13,00317	10,80998	9,16095	7,89566	6,90608
27	20,70690	16,32959	13,21053	10,93516	9,23722	7,94255	6,93515
28	21,28127	16,66306	13,40616	11,05108	9,30657	7,98442	6,96066
29	21,84438	16,98371	13,59072	11,15841	9,36961	8,02181	6,98304
30	22,39646	17,29203	13,76483	11,25778	9,42691	8,05518	7,00266
35	24,99862	18,66461	14,49825	11,65457	9,64416	8,17550	7,07005
40	27,35548	19,79277	15,04630	11,92461	9,77905	8,24378	7,10504
45	29,49016	20,72004	15,45583	12,10840	9,86281	8,28252	7,12322
50	31,42361	21,48218	15,76186	12,23348	9,91481	8,30450	7,13266
60	31,72839	21,57725	15,79217	12,24336	9,91810	8,30561	7,13304
70	31,97842	21,64146	15,80910	12,24793	9,91936	8,30597	7,13315
80	32,18353	21,68485	15,81855	12,25005	9,91985	8,30609	7,13317
90	32,35179	21,71416	15,82383	12,25104	9,92004	8,30612	7,13318
100	32,48982	21,73396	15,82678	12,25149	9,92011	8,30614	7,13318

- 178 -

b	I) Capitali	sation fact	tor for sing	gle moneta	ry fluxes	$(1+r)^n$			
Time	Discount rate, r, of:								
Period, n	2%	4%	6%	8%	10%	12%	14%		
1	1,02000	1,04000	1,06000	1,08000	1,10000	1,12000	1,14000		
2	1,04040	1,08160	1,12360	1,16640	1,21000	1,25440	1,29960		
3	1,06121	1,12486	1,19102	1,25971	1,33100	1,40493	1,48154		
4	1,08243	1,16986	1,26248	1,36049	1,46410	1,57352	1,68896		
5	1,10408	1,21665	1,33823	1,46933	1,61051	1,76234	1,92541		
6	1,12616	1,26532	1,41852	1,58687	1,77156	1,97382	2,19497		
7	1,14869	1,31593	1,50363	1,71382	1,94872	2,21068	2,50227		
8	1,17166	1,36857	1,59385	1,85093	2,14359	2,47596	2,85259		
9	1,19509	1,42331	1,68948	1,99900	2,35795	2,77308	3,25195		
10	1,21899	1,48024	1,79085	2,15892	2,59374	3,10585	3,70722		
11	1,24337	1,53945	1,89830	2,33164	2,85312	3,47855	4,22623		
12	1,26824	1,60103	2,01220	2,51817	3,13843	3,89598	4,81790		
13	1,29361	1,66507	2,13293	2,71962	3,45227	4,36349	5,49241		
14	1,31948	1,73168	2,26090	2,93719	3,79750	4,88711	6,26135		
15	1,34587	1,80094	2,39656	3,17217	4,17725	5,47357	7,13794		
16	1,37279	1,87298	2,54035	3,42594	4,59497	6,13039	8,13725		
17	1,40024	1,94790	2,69277	3,70002	5,05447	6,86604	9,27646		
18	1,42825	2,02582	2,85434	3,99602	5,55992	7,68997	10,57517		
19	1,45681	2,10685	3,02560	3,02560 4,31570 6,11591		8,61276	12,05569		
20	1,48595	2,19112	3,20714	4,66096	6,72750	9,64629	13,74349		
21	1,51567	2,27877	3,39956	5,03383	7,40025	10,80385	15,66758		
22	1,54598	2,36992	3,60354	5,43654	8,14027	12,10031	17,86104		
23	1,57690	2,46472	3,81975	5,87146	8,95430	13,55235	20,36158		
24	1,60844	2,56330	4,04893	6,34118	9,84973	15,17863	23,21221		
25	1,64061	2,66584	4,29187	6,84848	10,83471	17,00006	26,46192		
26	1,67342	2,77247	4,54938	7,39635	11,91818	19,04007	30,16658		
27	1,70689	2,88337	4,82235	7,98806	13,10999	21,32488	34,38991		
28	1,74102	2,99870	5,11169	8,62711	14,42099	23,88387	39,20449		
29	1,77584	3,11865	5,41839	9,31727	15,86309	26,74993	44,69312		
30	1,81136	3,24340	5,74349	10,06266	17,44940	29,95992	50,95016		
35	1,99989	3,94609	7,68609	14,78534	28,10244	52,79962	98,10018		
40	2,20804	4,80102	10,28572	21,72452	45,25926	93,05097	188,88351		
45	2,43785	5,84118	13,76461	31,92045	72,89048	163,98760	363,67907		
50	2,69159	7,10668	18,42015	46,90161	117,39085	289,00219	700,23299		
60	3,28103	10,51963	32,98769	101,25706	304,48164	897,59693	2595,91866		
70	3,99956	15,57162	59,07593	218,60641	789,74696	2787,79983	9623,64498		
80	4,87544	23,04980	105,79599	471,95483	2048,40021	8658,48310	35676,9818		
90	5,94313	34,11933	189,46451	1018,91509	5313,02261	26891,9342	132262,467		
100	7,24465	50,50495	339,30208	2199,76126	13780,6123	83522,2657	490326,238		

Table 8.2 (3/4) – Values of the present worth factor and of the capitalisation factor for different time periods, n, and discount rates, r

- 179 -

Table 8.2 (4/4) – Values of the present worth factor and of the capitalisation factor for
different time periods, n, and discount rates, r
$\left[\left(1+r\right)^n-1 \right]$

b?) Capitalization factor for uniform monetary fluxes							-1			
02)	Capitalisa	r								
Time		Uniform series of monetary fluxes and discount rate, r, of:								
period, n	2%	4%	12%	14%						
1	1,00000	1,00000	1,00000	1,00000	1,00000	1,00000	1,00000			
2	2,02000	2,04000	2,06000	2,08000	2,10000	2,12000	2,14000			
3	3,06040	3,12160	3,18360	3,24640	3,31000	3,37440	3,43960			
4	4,12161	4,24646	4,37462	4,50611	4,64100	4,77933	4,92114			
5	5,20404	5,41632	5,63709	5,86660	6,10510	6,35285	6,61010			
6	6,30812	6,63298	6,97532	7,33593	7,71561	8,11519	8,53552			
7	7,43428	7,89829	8,39384	8,92280	9,48717	10,08901	10,73049			
8	8,58297	9,21423	9,89747	10,63663	11,43589	12,29969	13,23276			
9	9,75463	10,58280	11,49132	12,48756	13,57948	14,77566	16,08535			
10	10,94972	12,00611	13,18079	14,48656	15,93742	17,54874	19,33730			
11	12,16872	13,48635	14,97164	16,64549	18,53117	20,65458	23,04452			
12	13,41209	15,02581	16,86994	18,97713	21,38428	24,13313	27,27075			
13	14,68033	16,62684	18,88214	21,49530	24,52271	28,02911	32,08865			
14	15,97394	18,29191	21,01507	24,21492	27,97498	32,39260	37,58107			
15	17,29342	20,02359	23,27597	27,15211	31,77248	37,27971	43,84241			
16	18,63929	21,82453	25,67253	30,32428	35,94973	42,75328	50,98035			
17	20,01207	23,69751	28,21288	33,75023	40,54470	48,88367	59,11760			
18	21,41231	25,64541	30,90565	37,45024	45,59917	55,74971	68,39407			
19	22,84056	27,67123	33,75999	41,44626	51,15909	63,43968	78,96923			
20	24,29737	29,77808	36,78559	45,76196	57,27500	72,05244	91,02493			
21	25,78332	31,96920	39,99273	50,42292	64,00250	81,69874	104,76842			
22	27,29898	34,24797	43,39229	55,45676	71,40275	92,50258	120,43600			
23	28,84496	36,61789	46,99583	60,89330	79,54302	104,60289	138,29704			
24	30,42186	39,08260	50,81558	66,76476	88,49733	118,15524	158,65862			
25	32,03030	41,64591	54,86451	73,10594	98,34706	133,33387	181,87083			
26	33,67091	44,31174	59,15638	79,95442	109,18177	150,33393	208,33274			
27	35,34432	47,08421	63,70577	87,35077	121,09994	169,37401	238,49933			
28	37,05121	49,96758	68,52811	95,33883	134,20994	190,69889	272,88923			
29	38,79223	52,96629	73,63980	103,96594	148,63093	214,58275	312,09373			
30	40,56808	56,08494	79,05819	113,28321	164,49402	241,33268	356,78685			
35	49,99448	73,65222	111,43478	172,31680	271,02437	431,66350	693,57270			
40	60,40198	95,02552	154,76197	259,05652	442,59256	767,09142	1342,02510			
45	71,89271	121,02939	212,74351	386,50562	718,90484	1358,23003	2590,56480			
50	84,57940	152,66708	290,33590	573,77016	1163,90853	2400,01825	4994,52135			
60	114,05154	237,99069	533,12818	1253,21330	3034,81640	7471,64111	18535,1332			
70	149,97791	364,29046	967,93217	2720,08007	7887,46957	23223,3319	68733,1784			
80	193,77196	551,24498	1746,59989	5886,93543	20474,0021	72145,6925	254828,441			
90	247,15666	827,98333	3141,07519	12723,9386	53120,2261	224091,118	944724,767			
100	312,23231	1237,62370	5638,36806	27484,5157	137796,123	696010,547	3502323,12			

- 180 -

8.2.4- Economic indexes

8.2.4.1- Basic considerations

The evaluation of the profitability of a small hydropower scheme or the comparison of alternative design solutions for the same can be based on economic indexes or parameters. Among these parameters the next five ones will be treated herein: **net present value** (NPV), **benefit/cost ratio** (B/C), **internal rate of return** (IRR), **average price of the kWh** (AP) and **payback period** (T).

The economic parameters do not always identify the same project as being the most economic amongst a number of alternatives. At the same time, the preference of one particular parameter may alter with a change, even small, in the discount rate.

Being the results of the economic analysis so sensitive to the value considered for the discount rate much attention should be paid in the establishment of this value However, in most situation, there is not a well-defined and unique discount rate but, instead, a range of possible discount rates. Although this range is often narrow, it is advisable to perform a sensitivity analysis of the project response to different discount rates. By this way it will be possible to partially overcome the uncertainty related with this rate and, at the same time, to conclude if there is any change in the relative preferences indicated by the economic parameters.

Especially to compare alternative design solutions for a small hydropower it is usual to evaluate, for each of these solutions, the ratio of the total capital cost to the installed capacity, that is to say, the cost per installed kW. Although this index is quite easy to obtain it is poorly informative from an economic point of view, as it does not take into account neither other costs of the project, nor its benefits. However it may be useful in the systematisation of the capital costs required for small hydropower projects or in comparison of alternative projects having similar benefits.

In the next items the following symbols will be utilised:

- n number of the project lifetime periods (generally measured in years and equal to the duration of the legal permits);
- r discount rate (constant along the project useful live);

- 181 -

- Ci capital costs in year i;
- Oj annual operation cost for year j;
- Rj revenues in year j;
- Pm reposition cost foreseen for year m (n/2 < m < n);
- \overline{E} mean annual production.

The abbreviations C, O, R and P will respectively denote the present values of the costs, Ci, Oj, Rj and Pm. If

- the capital costs occur in the first k years,
- the energy production takes place from year (k+1) until year n,
- the equipment reposition is foreseen for year m,

the following relation are obtained for the beginning of the n years period:

$$C = \sum_{i=1}^{k} \frac{Ci}{(1+r)^{i}}$$
(8.5)

$$O = \frac{\sum_{j=k+1}^{n} \frac{Oj}{(1+r)^{j}}}{(1+r)^{k}}$$
(8.6)

$$R = \frac{\sum_{j=k+1}^{n} \frac{Rj}{(1+r)^{j}}}{(1+r)^{k}}$$
(8.7)

$$P = \frac{Pm}{\left(1+r\right)^m}$$
(8.8)

The numerator of expressions (8.6) e (8.7) provides the present value (for the beginning of year k+1) of an annuity that will occur during n-k years, from year k+1 until year n. The denominator performs the transference of the previous value from year k to the beginning of year 1 - Figure 8.4.

Expression (8.6) assumes that the parcel of the annual operation costs related with the legal permits will occur only when the scheme starts to operate which is generally a far enough realistic scenario.

Fig. 8.4 – Compound present values operations.

As the annual benefits in a small hydropower scheme are generally evaluated on a constant annual production basis (the mean annual production, \overline{E}), expression (8.7) becomes

$$R = \frac{\overline{R} \frac{(1+r)^{(n-k)} - 1}{(1+r)^{(n-k)} r}}{(1+r)^k}$$
(8.9)

where \overline{R} is the mean annual benefit obtained by multiplying the \overline{E} by unitary sale price of the energy in the first year of the period under analysis (year 1).

The period for which the economical analysis is performed should be equal to the period foreseen in the legal permit of the hydropower exploitation. However, it is not reasonable to adopt periods greater then twenty five to thirty years, as the present values of the expected costs and benefits in the last years become so small that their contribution to the economic indexes is negligible.

If the lifetime of the equipment is greater than the assumed useful life of the hydropower scheme a residual value of the investment over its lifetime can be considered and jointed to the benefits. As the estimate of this residual quantity is quite subjective and fallible and its present value contribution for the scheme profitability will certainly be very modest, it will not be considered in the further development of this chapter.

8.2.4.2- Net Present Value (NPV)

The **net present value**, NPV, represents the cumulative sum of all expected benefits during the lifetime of the project minus the sum of all its cost during the same period, both expressed in terms of present values

$$NPV = R - C - O - P \tag{8.10}$$

If NPV is negative, the project should be rejected as it is expected that the benefits during its lifetime will be insufficient to cover the project costs. Assuming that there are not any restrictions with respect to the required initial capital availability, among projects or alternative design solutions with positive NPV the best ones will be those with greater NPV.

The net present value can also be evaluated by computing **the discount cumulative cash flow**. This cash flow gives, through each year of the economic analysis period, the value of the cumulative sum of the present values of the costs minus the present values of the benefits. The NPV equals the result provided by the cash flow for the last year of the period under analysis (year n).

8.2.4.3- Benefit/cost ratio (B/C)

The **benefit/cost ratio**, B/C, compares the present values of the benefits and costs of the hydropower scheme on a ratio basis. This index can be defined as the ratio between present values of the net annual benefits and of the capital and reposition costs or as the ratio between present values of the benefits and of the total costs, that is to say

- 184 -

$$B/C = \frac{R - O}{C + P}$$

$$B/C = \frac{R}{C + O + P}$$
(8.11)
(8.12)

The first definition seems more coherent as it combines together the annual monetary fluxes that occur during the project lifetime.

The B/C parameter has much popular appeal since it gives an immediate indication of the "degree" of desirability of a project. If the benefit/cost is less than one, the project is evidently undesirable. If it is exactly one the project has a marginal interest and if is greater than one, its implementation would seem justified and as much justified as B/C is higher.

It should be pointed out that the B/C ratio evaluated by expression (8.12) is always equal or greater then the B/C ratio that results from expression (8.11). However, if (8.11) provides a unitary value, the B/C ratio given by (8.12) will also be one. An unitary B/C ratio implies a NPV equal to zero.

8.2.4.4 Internal Rate of Return (IRR)

The **internal rate of return**, IRR, is defined as the discount rate that makes the net present value, NPV, equal to zero.

Let us considered a project having capital costs, Ci, during the first k years and energy revenues, Rj, and annual operation costs, Oj, from year j=(k+1) until year n. A reposition cost is foreseen for year m. In this condition, the project NPV for the beginning of year 1 can be evaluated according to

- 185 -

NPV = R - C - O - P =
$$\frac{\sum_{j=k+1}^{n} \frac{1}{(1+r)^{j}} R_{j}}{(1+r)^{k}} - \sum_{i=1}^{k} \frac{1}{(1+r)^{i}} C_{i} - \frac{\sum_{j=k+1}^{n} \frac{1}{(1+r)^{j}} O_{j}}{(1+r)^{k}} - \frac{Pm}{(1+r)^{m}}$$
 (8.13)

The respective IRR will be obtained by

$$NPV = \frac{\sum_{j=k+1}^{n} \frac{1}{(1+IRR)^{j}} (Rj - Oj)}{(1+IRR)^{k}} - \sum_{i=1}^{k} \frac{1}{(1+IRR)^{i}} C_{i} - \frac{Pm}{(1+IRR)^{m}} = 0$$
(8.14)

A discount rate equal to IRR will imply an unitary B/C ratio and a null NPV.

A process of trial and error can provide the solution of expression (8.14). This process, which is generally simple to carry out with the software available nowadays, begins with an arbitrary discount rate. If the NPV thus obtained is positive, a higher discount rate must be tested; if NPV is negative, the search must proceed with a lower discount rate – Figure 8.5.

- 186 -

Figure 8.5 - Internal rate of return, IRR

The previous figure assumes that the project is well behaved from an economic point of view. This is a correct assumption for small hydropower projects in which the capital costs occur during a very short period of time (generally, less than three years) while the incomes last during the useful life of the scheme (for saying, more than twenty years).

Among projects or alternative design solutions with different internal rates of return the best ones will be those with greater IRR. If the rates thus achieved are greater than the opportunity costs of the capital, the projects are advantageous from an economic point of view.

8.2.4.5- Average price of the kWh (AP)

Although this parameter is not generally referred in the speciality literature, it is an interesting index as it provides economic information in a way very simple to understand. It is also useful in the comparison of alternative design solutions.

According to the abbreviations established, the **average price of the kWh**, AP, is be defined by

- 187 -

$$AP = \frac{\sum_{i=1}^{k} \frac{1}{(1+r)^{i}} Ci + \frac{\sum_{j=k+1}^{n} \frac{1}{(1+r)^{j}} Oj}{(1+r)^{k}} + \frac{Pm}{(1+r)^{m}}}{\frac{(1+r)^{(n-k)} - 1}{(1+r)^{(n-k)} r} \overline{E}} = \frac{C+O+P}{\frac{(1+r)^{(n-k)} - 1}{(1+r)^{(n-k)} r} \overline{E}}$$
(8.15)

This parameter represents the ratio between the present value of all costs and an "equivalent energy present amount". This last amount is obtained by applying the present worth factor to the mean annual production. By other words, the AP index represents the unitary energy sale price that makes the NPV equal to zero and the B/C ratio equal to one.

If the AP price is lower than the nominal unitary energy-selling price the project is justified from an economic point of view. The best project will be the one with lower AP.

8.2.4.6- Payback period (T)

The **payback period** or recovery period, T, can be defined either on a discounted or without discount basis and represents the number of years it takes before cumulative forecasted cash flows equal the initial investment. Its value is provided by the year when the cumulative cash flow changes from a negative value to a positive value.

8.2.5- Sensitivity analysis

A small hydropower scheme project is usually characterised by a lack of certainty about the capital cost estimates, future annual costs and future value of

- 188 -

the energy. So a sensitivity analysis should be performed in order to analyse the project response capability to different scenarios. These scenarios can be obtained by increasing the costs and maintaining or decreasing the benefits or, if the cost estimates are considered to be accurate enough, maintaining the costs and decreasing the benefits. Variations from $\pm 10\%$ to $\pm 20\%$ are usually adopted in the previous analysis.

In what concerns the discount rate, at least two values should be considered around the most probable discount rate: a pessimist value higher than the expected one and a optimist value, lower than the expected discount rate.

8.2.6- Application example

Table 8.3 provides an application example for a hypothetical hydropower scheme having an installed capacity of 2,2 MW and an average energy production of 8,5 GWh.

The costs were considered to occur during the first two years (execution period) and the benefits during the next twenty-eight years (total duration of the legal licence period of 30 years). No residual costs, reposition costs and spare parts costs were considered. The economic analysis was developed for three discount rates: 10%, 8% and 6%. The first year is adopted for reference year.

The annual operation costs were estimate on the basis of fixed percentages either of the capital costs (exploitation and maintenance costs), or of the incomes (legal permit costs).

As one can concluded from the previous table, if the discount rate is set equal to the internal rate return then the net present value becomes zero, the benefit/cost ratio one, the average price of the kWh the nominal unitary sale price of the energy and the payback period the analysis period.

- 189 -

Guidelines for design of SMALL HYDROPOWER PLANTS

COST AND BENEFITS							E	CONOMICA	L ANALYSI	s		
	YEAR 1	YEAR 2	YEAR 3	YEAR 4		YEAR 30		installed capacity (MW)	GENERAL CHA	RACTERISTICS 2.200	1	
CAPITAL COSTS								Mean annual production (GWh)	8.500		
(10 ³ EURO)								CostperkW (EURO/kW)		1492273		
1 -Studies and design	74000	38000										
2 - Supervision during execution	25000	60000							ECONOMIC	ANALYSIS		
3 - Civilworks	70000	140000							20			
3.1 - W eI and water make	60000	265000						Anaysis period (years)	30			
3.2 - Forebay	09000	205000						TDD (%)	12 590			
3.3 -Folebay	60000	18000						IRR(%)	13.589			
3.4 -Pelisbock	20000	20000						Dingount with ()	0.100	0.090	0.060	0.12590
3.5 Poweniouse	42500	17500						Discourrenate (-)	0100	0.000	0.060	013203
3.6 -Adess Idad	42500	1/300										
4 -Equipment								NPV (EURO)	880175.3	1644455.4	2725947.8	0.0
4.1 -W eirand waterintake	30000	60000						B/C (-)	1.3150	1.5706	1.9165	1.0000
4.2 -Forebay		25000						AP(EURO/1 000 kWh)	49.037	42.080	35.621	62.500
4.3 - Penstock	270000	300000						Payback period (years	(See	discount cumu	lative cash :	Elow)
4.4 - Powerhouse	200000	750000										
								Year	Discou	nt cumulativ	ve cash flow	(ECU)
5 - Connection to the electrical grid		400000										0.6453.0.0
6 -B.STE TACHTES.Contigencies	99000	50000						1	-892727.3	-909259.3	-926415J	-864518.8
7 -Land acquisition	55000	55000						2	-2794380.2	-2881995.9	-2974296.9	-2647893.2
// 0.3)								3	-2435439.5	-2302742.3	-2373108.8	-2321914.2
TOTAL (10° EURO)	982000	2301000						4	-2109129.8	-2151582.0	-2194746.0	-2034933.7
								5	-1812484.7	-1826433.4	-18377435	-1782285.9
ANNUAL OPERATION COSTS								6	-1542807.3	-1525369.9	-1500948.6	-1559863.5
(10° EURO)								7	-1297646.0	-1246607.3	-1183217.5	-1364050.6
								8	-10747721	-988493.9	-883471.3	-1191663.7
L -Exploiation			14000	14000		14000		9	-872159.4	-/49499.9	-600691.8	-1039900.2
2 -Mantenance			65.00	6500		6500		10	-08/960 I	-528209.2	-333918./	-906292.9
2.1 -C MIWORKS			0500	0500		25500		11	-520517.7	-323310.4	-62245.9	-/88009.0
2.2 -Equipare incident			25500	25500		25500		12	-308291.8	-133509.3	270160.0	-000110.2 E020EE 1
3 -Legarpent ison		-	/500	7500		/500		14	-104099.1	204733.6	590479 3	-5939351
								14	-1040981	204733.0	390478.3	-513098.2
TOTAL (10° EURO)	-		53500	53500		53500		15		355340.3	789826.7	-443042.9
								16	114243.7	494791.0	977891.2	-380840.4
ANNUAL BENEFITS								17	208764.0	623912.0	1155310.6	-326079.4
1 March and a loss duration (2.11 b.)			0.5	0.5		0.5		18	294691.0	743468.5	1322687.3	-277869.8
1 -M ean annualproduction (G W II) 2 We have a h write (TWD 0 (1 000 http://www.sci.uk.uk.uk.uk.uk.uk.uk.uk.uk.uk.uk.uk.uk.			6.5	6.5		6.6		19	3/280/5	854168.9	1480589.9	-235427.7
2 - Unitary sale price (EURO /I 000 KW			02.5	02.5		02.5		20	443822.0	950009.3	17700974	-198063.2
								21	508380.0	1031377.1	1//008/4	-105108.7
TOTAL (10° EURO)			531250	531250		531250		22	567070.3	1139454.7	1902665.4	-136209.6
								23	620424.5	1220822.8	20277391	-110714.9
								24	668928.4	1296163.7	2145733.1	-88270.3
								25	713022.8	1365923.7	2257048.2	-68510.9
								26	753108.6	1430516.3	2302062.4	-51115.4
								27	/89550.3	1645702.3	2401132.4	-35801 JJ
								20	952706.2	1596077.0	2004054./	-22318./
								30	880175.3	1644455.4	2725947.8	0.0

Table 8.3 – Application example

NOTATION

AP	average price of the kWh.
B/C	benefit/cost ratio.
С	present value of the capital costs.
Ci	capital costs in year i.
$\overline{\mathrm{E}}$	mean annual production.
IRR	internal rate of return.
n	number of the project lifetime periods (generally measured in years).
NPV	net present value.
0	present value of the annual operation costs.
Oj	annual operation cost for year j.
Р	present value of the reposition costs.
Pm	reposition cost in year m.
PV	present value.
r	discount rate.
R	present value of the revenues.
Rj	revenues in year j.
R	mean annual benefit.
Т	payback period.

- KUIPER, E. (1981) *Water resources projects economics*. Butterworths and Co., London.
- PORTELA, M. M; ALMEIDA, A. B. (1995) Production evaluation of small powerplants under variable yearly flow conditions. *Proceedings of the 4 th International Conference HIDROENERGIA 95*. Milan, Italy.
- ESHA (1994), *Layman's guidebook on how to develop a small hydro site*. Part I and Part II, Directorate General for Energy (DG XVII), European Small Hydropower Association, Brussels.
- ESHA (1998), *Layman's guidebook on how to develop a small hydro site*. Part I and Part II, Directorate General for Energy (DG XVII), European Small Hydropower Association, Brussels.
- JIANDONG, T.; NAIBO, Z.; XIANHUAN, W.; JING, H.; JUISHEN, D.(1996) *Mini hydropower*, John Wiley and Sons, England.

- 191 -